Search results for "inert gases"

showing 1 items of 1 documents

Xenon Improves Neurologic Outcome and Reduces Secondary Injury Following Trauma in an In Vivo Model of Traumatic Brain Injury*

2014

Objectives: To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Design: Controlled animal study. Setting: University research laboratory. Subjects: Male C57BL/6N mice (n = 196). Interventions: Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements and Main Results: Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor functio…

MaleXenonINTRACRANIAL-PRESSURE1110 NursingCritical Care and Intensive Care MedicineGAIT ABNORMALITIESXenonGaitIntracranial pressureintegumentary systemBrainGLYCINE SITEINTRACEREBRAL-HEMORRHAGED-ASPARTATE RECEPTORNeuroprotective AgentsTreatment OutcomeAnesthesiahead traumaneuroprotectionLife Sciences & BiomedicinePOTASSIUM CHANNELSLocomotioncirculatory and respiratory physiologyinorganic chemicalsTraumatic brain injurychemistry.chemical_elementNeuroprotection1117 Public Health and Health ServicesHead traumaCritical Care MedicineIn vivoGeneral & Internal MedicineAdministration InhalationmedicineAnimalscardiovascular diseasesIntracerebral hemorrhageScience & Technologybusiness.industry1103 Clinical Sciencesbrain injurymedicine.diseaseCONTROLLED CORTICAL IMPACTCOMPETITIVE-INHIBITIONEmergency & Critical Care MedicineMice Inbred C57BLDisease Models AnimalCOGNITIVE DEFICITSchemistryBrain InjuriesClosed head injurybusinessCLOSED-HEAD INJURYinert gasesCritical Care Medicine
researchProduct